The End of Physics

There is an army of physicists out there – still – trying to convince you there is still some mystery that needs explaining. They are wrong: quantum-mechanical weirdness is weird, but it is not some mystery. We have a decent interpretation of what quantum-mechanical equations – such as Schrodinger’s equation, for example – actually mean. We can also understand what photons, electrons, or protons – light and matter – actually are, and such understanding can be expressed in terms of 3D space, time, force, and charge: elementary concepts that feel familiar to us. There is no mystery left.

Unfortunately, physicists have completely lost it: they have multiplied concepts and produced a confusing but utterly unconvincing picture of the essence of the Universe. They promoted weird mathematical concepts – the quark hypothesis is just one example among others – and gave them some kind of reality status. The Nobel Prize Committee then played the role of the Vatican by canonizing the newfound religion.

It is a sad state of affairs, because we are surrounded by too many lies already: the ads and political slogans that shout us in the face as soon as we log on to Facebook to see what our friends are up to, or to YouTube to watch something or – what I often do – listen to the healing sounds of music.

The language and vocabulary of physics are complete. Does it make us happier beings? It should, shouldn’t it? I am happy I understand. I find consciousness fascinating – self-consciousness even more – but not because I think it is rooted in mystery. No. Consciousness arises from the self-organization of matter: order arising from chaos. It is a most remarkable thing – and it happens at all levels: atoms in molecules, molecules forming cellular systems, cellular systems forming biological systems. We are a biological system which, in turn, is part of much larger systems: biological, ecological – material systems. There is no God talking to us. We are on our own, and we must make the best out of it. We have everything, and we know everything.

Sadly, most people do not realize.

Post scriptum: With the end of physics comes the end of technology as well, isn’t it? All of the advanced technologies in use today are effectively already described in Feynman’s Lectures on Physics, which were written and published in the first half of the 1960s.

I thought about possible counterexamples, like optical-fiber cables, or the equipment that is used in superconducting quantum computing, such as Josephson junctions. But Feynman already describes Josephson junctions in the last chapter of his Lectures on Quantum Mechanics, which is a seminar on superconductivity. And fiber-optic cable is, essentially, a waveguide for light, which Feynman describes in very much detail in Chapter 24 of his Lectures on Electromagnetism and Matter. Needless to say, computers were also already there, and Feynman’s lecture on semiconductors has all you need to know about modern-day computing equipment. [In case you briefly thought about lasers, the first laser was built in 1960, and Feynman’s lecture on masers describes lasers too.]

So it is all there. I was born in 1969, when Man first walked on the Moon. CERN and other spectacular research projects have since been established, but, when one is brutally honest, one has to admit these experiments have not added anything significant – neither to the knowledge nor to the technology base of humankind (and, yes, I know your first instinct is to disagree with that, but that is because study or the media indoctrinated you that way). It is a rather strange thought, but I think it is essentially correct. Most scientists, experts and commentators are trying to uphold a totally fake illusion of progress.

Form and substance

Philosophers usually distinguish between form and matter, rather than form and substance. Matter, as opposed to form, is then what is supposed to be formless. However, if there is anything that physics – as a science – has taught us, is that matter is defined by its form: in fact, it is the form factor which explains the difference between, say, a proton and an electron. So we might say that matter combines substance and form.

Now, we all know what form is: it is a mathematical quality—like the quality of having the shape of a triangle or a cube. But what is (the) substance that matter is made of? It is charge. Electric charge. It comes in various densities and shapes – that is why we think of it as being basically formless – but we can say a few more things about it. One is that it always comes in the same unit: the elementary charge—which may be positive or negative. Another is that the concept of charge is closely related to the concept of a force: a force acts on a charge—always.

We are talking elementary forces here, of course—the electromagnetic force, mainly. What about gravity? And what about the strong force? Attempts to model gravity as some kind of residual force, and the strong force as some kind of electromagnetic force with a different geometry but acting on the very same charge, have not been successful so far—but we should immediately add that mainstream academics never focused on it either, so the result may be commensurate with the effort made: nothing much.

Indeed, Einstein basically explained gravity away by giving us a geometric interpretation for it (general relativity theory) which, as far as I can see, confirms it may be some residual force resulting from the particular layout of positive and negative charge in electrically neutral atomic and molecular structures. As for the strong force, I believe the quark hypothesis – which basically states that partial (non-elementary) charges are, somehow, real – has led mainstream physics into the dead end it finds itself in now. Will it ever get out of it?

I am not sure. It does not matter all that much to me. I am not a mainstream scientist and I have the answers I was looking for. These answers may be temporary, but they are the best I have for the time being. The best quote I can think of right now is this one:

‘We are in the words, and at the same time, apart from them. The words spin out, spin us out, over a void. There, somewhere between us, some words form some answer for some time, allowing us to live more fully in the forgetting face of nonexistence, in the dissolving away of each other.’ (Jacques Lacan, in Jeremy D. Safran (2003), Psychoanalysis and Buddhism: an unfolding dialogue, p. 134)

That says it all, doesn’t it? For the time being, at least. 🙂

Post scriptum: You might think explaining gravity as some kind of residual electromagnetic force should be impossible, but explaining the attractive force inside a nucleus behind like charges was pretty difficult as well, until someone came up with a relatively simple idea based on the idea of ring currents. 🙂

Feynman’s religion

Perhaps I should have titled this post differently: the physicist’s worldview. We may, effectively, assume that Richard Feynman’s Lectures on Physics represent mainstream sentiment, and he does get into philosophy—less or more liberally depending on the topic. Hence, yes, Feynman’s worldview is pretty much that of most physicists, I would think. So what is it? One of his more succinct statements is this:

“Often, people in some unjustified fear of physics say you cannot write an equation for life. Well, perhaps we can. As a matter of fact, we very possibly already have an equation to a sufficient approximation when we write the equation of quantum mechanics.” (Feynman’s Lectures, p. II-41-11)

He then jots down that equation that Schrödinger has on his grave (shown below). It is a differential equation: it relates the wavefunction (ψ) to its time derivative through the Hamiltonian coefficients that describe how physical states change with time (Hij), the imaginary unit (i) and Planck’s quantum of action (ħ).

hl_alpb_3453_ptplr

Feynman, and all modern academic physicists in his wake, claim this equation cannot be understood. I don’t agree: the explanation is not easy, and requires quite some prerequisites, but it is not anymore difficult than, say, trying to understand Maxwell’s equations, or the Planck-Einstein relation (E = ħ·ω = h·f).

In fact, a good understanding of both allows you to not only understand Schrödinger’s equation but all of quantum physics. The basics are this: the presence of the imaginary unit tells us the wavefunction is cyclical, and that it is an oscillation in two dimensions. The presence of Planck’s quantum of action in this equation tells us that such oscillation comes in units of ħ. Schrödinger’s wave equation as a whole is, therefore, nothing but a succinct representation of the energy conservation principle. Hence, we can understand it.

At the same time, we cannot, of course. We can only grasp it to some extent. Indeed, Feynman concludes his philosophical remarks as follows:

“The next great era of awakening of human intellect may well produce a method of understanding the qualitative content of equations. Today we cannot. Today we cannot see that the water flow equations contain such things as the barber pole structure of turbulence that one sees between rotating cylinders. We cannot see whether Schrödinger’s equation contains frogs, musical composers, or morality—or whether it does not. We cannot say whether something beyond it like God is needed, or not. And so we can all hold strong opinions either way.” (Feynman’s Lectures, p. II-41-12)

I think that puts the matter to rest—for the time being, at least. 🙂