Quantum Physics: A Survivor’s Guide

A few days ago, I mentioned I felt like writing a new book: a sort of guidebook for amateur physicists like me. I realized that is actually fairly easy to do. I have three very basic papers – one on particles (both light and matter), one on fields, and one on the quantum-mechanical toolbox (amplitude math and all of that). But then there is a lot of nitty-gritty to be written about the technical stuff, of course: self-interference, superconductors, the behavior of semiconductors (as used in transistors), lasers, and so many other things – and all of the math that comes with it. However, for that, I can refer you to Feynman’s three volumes of lectures, of course. In fact, I should: it’s all there. So… Well… That’s it, then. I am done with the QED sector. Here is my summary of it all (links to the papers on Phil Gibbs’ site):

Paper I: Quantum behavior (the abstract should enrage the dark forces)

Paper II: Probability amplitudes (quantum math)

Paper III: The concept of a field (why you should not bother about QFT)

Paper IV: Survivor’s guide to all of the rest (keep smiling)

Paper V: Uncertainty and the meaning of the wavefunction (the final!)

Jean Louis Van Belle, 21 October 2020

Note: As for the QCD sector, that is a mess. We might have to wait another hundred years or so to see the smoke clear up there. Or, who knows, perhaps some visiting alien(s) will come and give us a decent alternative for the quark hypothesis and quantum field theories. One of my friends thinks so. Perhaps I should trust him more. 🙂

As for Phil Gibbs, I should really thank him for being one of the smartest people on Earth – and for his site, of course. Brilliant forum. Does what Feynman wanted everyone to do: look at the facts, and think for yourself. 🙂

The concept of a field

I ended my post on particles as spacetime oscillations saying I should probably write something about the concept of a field too, and why and how many academic physicists abuse it so often. So I did that, but it became a rather lengthy paper, and so I will refer you to Phil Gibbs’ site, where I post such stuff. Here is the link. Let me know what you think of it.

As for how it fits in with the rest of my writing, I already jokingly rewrote two of Feynman’s introductory Lectures on quantum mechanics (see: Quantum Behavior and Probability Amplitudes). I consider this paper to be the third. 🙂

Post scriptum: Now that I am talking about Richard Feynman – again ! – I should add that I really think of him as a weird character. I think he himself got caught in that image of the ‘Great Teacher’ while, at the same (and, surely, as a Nobel laureate), he also had to be seen to a ‘Great Guru.’ Read: a Great Promoter of the ‘Grand Mystery of Quantum Mechanics’ – while he probably knew classical electromagnetism combined with the Planck-Einstein relation can explain it all… Indeed, his lecture on superconductivity starts off as an incoherent ensemble of ‘rocket science’ pieces, to then – in the very last paragraphs – manipulate Schrödinger’s equation (and a few others) to show superconducting currents are just what you would expect in a superconducting fluid. Let me quote him:

“Schrödinger’s equation for the electron pairs in a superconductor gives us the equations of motion of an electrically charged ideal fluid. Superconductivity is the same as the problem of the hydrodynamics of a charged liquid. If you want to solve any problem about superconductors you take these equations for the fluid [or the equivalent pair, Eqs. (21.32) and (21.33)], and combine them with Maxwell’s equations to get the fields.”

So… Well… Looks he too is all about impressing people with ‘rocket science models’ first, and then he simplifies it all to… Well… Something simple. 😊

Having said that, I still like Feynman more than modern science gurus, because the latter usually don’t get to the simplifying part. :-/

A new book?

I don’t know where I would start a new story on physics. I am also not quite sure for whom I would be writing it – although it would be for people like me, obviously: most of what we do, we do for ourselves, right? So I should probably describe myself in order to describe the audience: amateur physicists who are interested in the epistemology of modern physics – or its ontology, or its metaphysics. I also talk about the genealogy or archaeology of ideas on my ResearchGate site. All these words have (slightly) different meanings but the distinctions do not matter all that much. The point is this: I write for people who want to understand physics in pretty much the same way as the great classical physicist Hendrik Antoon Lorentz who, just a few months before his demise, at the occasion of the (in)famous 1927 Solvay Conference, wanted to understand the ‘new theories’:

“We are representing phenomena. We try to form an image of them in our mind. Till now, we always tried to do using the ordinary notions of space and time. These notions may be innate; they result, in any case, from our personal experience, from our daily observations. To me, these notions are clear, and I admit I am not able to have any idea about physics without those notions. The image I want to have when thinking physical phenomena has to be clear and well defined, and it seems to me that cannot be done without these notions of a system defined in space and in time.”

Note that H.A. Lorentz understood electromagnetism and relativity theory as few others did. In fact, judging from some of the crap out there, I can safely say he understood stuff as few others do today still. Hence, he should surely not be thought of as a classical physicist who, somehow, was stuck. On the contrary: he understood the ‘new theories’ better than many of the new theorists themselves. In fact, as far as I am concerned, I think his comments or conclusions on the epistemological status of the Uncertainty Principle – which he made in the same intervention – still stand. Let me quote the original French:

“Je pense que cette notion de probabilité [in the new theories] serait à mettre à la fin, et comme conclusion, des considérations théoriques, et non pas comme axiome a priori, quoique je veuille bien admettre que cette indétermination correspond aux possibilités expérimentales. Je pourrais toujours garder ma foi déterministe pour les phénomènes fondamentaux, dont je n’ai pas parlé. Est-ce qu’un esprit plus profond ne pourrait pas se rendre compte des mouvements de ces électrons. Ne pourrait-on pas garder le déterminisme en en faisant l’objet d’une croyance? Faut-il nécessairement ériger l’ indéterminisme en principe?”

What a beautiful statement, isn’t it? Why should we elevate indeterminism to a philosophical principle? Indeed, now that I’ve inserted some French, I may as well inject some German. The idea of a particle includes the idea of a more or less well-known position. Let us be specific and think of uncertainty in the context of position. We may not fully know the position of a particle for one or more of the following reasons:

  1. The precision of our measurements may be limited: this is what Heisenberg referred to as an Ungenauigkeit.
  2. Our measurement might disturb the position and, as such, cause the information to get lost and, as a result, introduce an uncertainty: this is what we may translate as an Unbestimmtheit.
  3. The uncertainty may be inherent to Nature, in which case we should probably refer to it as an Ungewissheit.

So what is the case? Lorentz claims it is either the first or the second – or a combination of both – and that the third proposition is a philosophical statement which we can neither prove nor disprove. I cannot see anything logical (theory) or practical (experiment) that would invalidate this point. I, therefore, intend to write a basic book on quantum physics from what I hope would be Lorentz’ or Einstein’s point of view.

My detractors will immediately cry wolf: Einstein lost the discussions with Bohr, didn’t he? I do not think so: he just got tired of them. I want to try to pick up the story where he left it. Let’s see where I get. 🙂

Particles as spacetime oscillations

My very first publication on Phil Gibb’s site – The Quantum-Mechanical Wavefunction as a Gravitational Wave – reached 500+ downloads. I find that weird, because I warn the reader in the comments section that some of these early ideas do not make sense. Indeed, while my idea of modelling an electron as a two-dimensional oscillation has not changed, the essence of the model did. My theory of matter is based on the idea of a naked charge – with zero rest mass – orbiting around some center, and the energy in its motion – a perpetual current ring, really – is what gives matter its (equivalent) mass. Wheeler’s idea of ‘mass without mass’. The force is, therefore, definitely not gravitational.

It cannot be: the force has to grab onto something, and all it can grab onto is the naked charge. The force must, therefore, be electromagnetic. So I now look at that very first paper as an immature essay. However, I leave it there because that paper does ask all of the right questions, and I should probably revisit it – because the questions I get on my last paper on the subject – De Broglie’s Matter-Wave: Concept and Issues, which gets much more attention on ResearchGate than on Phil Gibb’s site (so it is more serious, perhaps) – are quite similar to the ones I try to answer in that very first paper: what is the true nature of the matter-wave? What is that fundamental oscillation?

I have been thinking about this for many years now, and I may never be able to give a definite answer to the question, but yesterday night some thoughts came to me that may or may not make sense. And so to be able to determine whether they might, I thought I should write them down. So that is what I am going to do here, and you should not take it very seriously. If anything, they may help you to find some answers for yourself. So if you feel like switching off because I am getting too philosophical, please do: I myself wonder how useful it is to try to interpret equations and, hence, to write about what I am going to write about here – so I do not mind at all if you do too!

That is too much already as an introduction, so let us get started. One of my more obvious reflections yesterday was this: the nature of the matter-wave is not gravitational, but it is an oscillation in space and in time. As such, we may think of it as a spacetime oscillation. In any case, physicists often talk about spacetime oscillations without any clear idea of what they actually mean by it, so we may as well try to clarify it in this very particular context here: the explanation of matter in terms of an oscillating pointlike charge. Indeed, the first obvious point to make is that any such perpetual motion may effectively be said to be a spacetime oscillation: it is an oscillation in space – and in time, right?

As such, a planet orbiting some star – think of the Earth orbiting our Sun – may be thought of a spacetime oscillation too ! Am I joking? No, I am not. Let me elaborate this idea. The concept of a spacetime oscillation implies we think of space as something physical, as having an essence of sorts. We talk of a spacetime fabric, a (relativistic) aether or whatever other term comes to mind. The Wikipedia article on aether theories quotes Robert B. Laughlin as follows in this regard: “It is ironic that Einstein’s most creative work, the general theory of relativity, should boil down to conceptualizing space as a medium when his original premise [in special relativity] was that no such medium existed [..] The word ‘ether’ has extremely negative connotations in theoretical physics because of its past association with opposition to relativity. This is unfortunate because, stripped of these connotations, it rather nicely captures the way most physicists actually think about the vacuum.”

I disagree with that. I do not think about the vacuum in such terms: the vacuum is the Cartesian mathematical 3D space in which we imagine stuff to exist. We should not endow this mathematical space with any physical qualities – with some essence. Mathematical concepts are mathematical concepts only. It is the difference between size and distance. Size is physical: an electron – any physical object, really – has a size. But the distance between two points is a mathematical concept only.

The confusion arises from us expressing both in terms of the physical distance unit: a meter, or a pico- or femtometer – whatever is appropriate for the scale of the things that we are looking at. So it is the same thing when we talk about a point: we need to distinguish a physical point – think of our pointlike charge here – and a mathematical point. That should be the key to understanding matter-particles as spacetime oscillations – if we would want to understand them as such, that is – which is what we are trying to do here. So how should we think of this? Let us start with matter-particles. In our realist interpretation of physics, we think of matter-particles as consisting of charge – in contrast to, say, photons, the particles of light, which (also) carry energy but no charge. Let us consider the electron, because the structure of the proton is very different and may involve a different force: a strong force – as opposed to the electromagnetic force that we are so familiar with. Let me use an animated gif from the Wikipedia Commons repository to recapture the idea of such (two-dimensional) oscillation.

Think of the green dot as the pointlike charge: it is a physical point moving in a mathematical space – a simple 2D plane, in this case. So it goes from here to there, and here and there are two mathematical points only: points in the 3D Cartesian space which – as H.A. Lorentz pointed out when criticizing the new theories – is a notion without which we cannot imagine any idea in physics. So we have a spacetime oscillation here alright: an oscillation in space, and in time. Oscillations in space are always oscillations in time, obviously – because the idea of an oscillation implies the idea of motion, and the idea of motion always involves the notion of space as well as the notion of time. So what makes this spacetime oscillation different from, say, the Earth orbiting around the Sun?

Perhaps we should answer this question by pointing out the similarities first. A planet orbiting around the sun involves perpetual motion too: there is an interplay between kinetic and potential energy, both of which depend on the distance from the center. Indeed, Earth falls into the Sun, so to speak, and its kinetic energy gets converted into potential energy and vice versa. However, the centripetal force is gravitational, of course. The centripetal force on the pointlike charge is not: there is nothing at the center pulling it. But – Hey ! – what is pulling our planet, exactly? We do not believe in virtual gravitons traveling up and down between the Sun and the Earth, do we? So the analogy may not be so bad, after all ! It is just a very different force: its structure is different, and it acts on something different: a charge versus mass. That’s it. Nothing more. Nothing less.

Or… Well… Velocities are very different, of course, but even there distinctions are, perhaps, less clear-cut than they appear to be at first. The pointlike charge in our electron has no mass and, therefore, moves at lightspeed. The electron itself, however, acquires mass and, therefore, moves at a fraction of lightspeed only in an atomic or molecular orbital. And much slower in a perpetual current in superconducting material. [Yes. When thinking of electrons in the context of superconduction, we have an added complication: we should think of electron pairs (Cooper pairs) rather than individual electrons, it seems. We are not quite sure what to make of this – except to note electrons will also want to lower their energy by pairing up in atomic or molecular orbitals, and we think the nature of this pairing must, therefore, be the same.]

Did we clarify anything? Maybe. Maybe not. Saying that an electron is a pointlike charge and a two-dimensional oscillation, or saying that it’s a spacetime oscillation itself, appears to be a tautology here, right? Yes. You are right. So what’s the point, then?

We are not sure, except for one thing: when defining particles as spacetime oscillations, we do definitely not need the idea of virtual particles. That’s rubbish: an unnecessary multiplication of concepts. So I think that is some kind of progress we got out of this rather difficult philosophical reflections, and that is useful, I think. To illustrate this point, you may want to think of the concept of heat. When there is heat, there is no empty space. There is no vacuum anymore. When we heat a space, we fill it with photons. They bounce around and get absorbed and re-emitted all of the time. in fact, we, therefore, also need matter to imagine a heated space. Hence, space here is no longer the vacuum: it is full of energy, but this energy is always somewhere – and somewhere specifically: it’s carried by a photon, or (temporarily) stored as an electron orbits around a nucleus in an excited state (which amounts to the same as saying it is being stored by an atom or some molecular structure consisting of atoms). In short, heat is energy but it is being ‘transmitted’ or ‘transported’ through space by photons. Again, the point is that the vacuum itself should not be associated with energy: it is empty. It is a mathematical construct only.

We should try to think this through – even further than we already did – by thinking how photons – or radiation of heat – would disturb perpetual currents: in an atom, obviously (the electron orbitals), but also perpetual superconducting currents at the macro-scale: unless the added heat from the photons is continuously taken away by the supercooling helium or whatever is used, radiation or heat will literally bounce the electrons into a different physical trajectory, so we should effectively associate excited energy states with different patterns of motion: a different oscillation, in other words. So it looks like electrons – or electrons in atomic/molecular orbitals – do go from one state into another (excited) state and back again but, in whatever state they are, we should think of them as being in their own space (and time). So that is the nature of particles as spacetime oscillations then, I guess. Can we say anything more about it?

I am not sure. At this moment, I surely have nothing more to say about it. Some more thinking about how superconduction – at the macro-scale – might actually work could, perhaps, shed more light on it: is there an energy transfer between the two electrons in a Cooper pair? An interplay between kinetic and potential energy? Perhaps the two electrons behave like coupled pendulums? If they do, then we need to answer the question: how, exactly? Is there an exchange of (real) photons, or is the magic of the force the same: some weird interaction in spacetime which we can no further meaningfully analyze, but which gives space not only some physicality but also causes us to think of it as being discrete, somehow. Indeed, an electron is an electron: it is a whole. Thinking of it as a pointlike charge in perpetual motion does not make it less of a whole. Likewise, an electron in an atomic orbital is a whole as well: it just occupies more space. But both are particles: they have a size. They are no longer pointlike: they occupy a measurable space: the Cartesian (continuous) mathematical space becomes (discrete) physical space.

I need to add another idea here – or another question for you, if I may. If superconduction can only occur when electrons pair up, then we should probably think of the pairs as some unit too – and a unit that may take up a rather large space. Hence, the idea of a discrete, pointlike, particle becomes somewhat blurred, right? Or, at the very least, it becomes somewhat less absolute, doesn’t it? 🙂

I guess I am getting lost in words here, which is probably worse than getting ‘lost in math‘ (I am just paraphrasing Sabine Hossenfelder here) but, yes, that is why I am writing a blog post rather than a paper here. If you want equations, read my papers. 🙂 Oh – And don’t forget: fields are real as well. They may be relative, but they are real. And it’s not because they are quantized (think of (magnetic) flux quantization in the context of superconductivity, for example) that they are necessarily discrete – that we have field packets, so to speak. I should do a blog post on that. I will. Give me some time. 🙂

Post scriptum: What I wrote above on there not being any exchange of gravitons between an orbiting planet and its central star (or between double stars or whatever gravitational trajectories out there), does not imply I am ruling out their existence. I am a firm believer in the existence of gravitational waves, in fact. We should all be firm believers because – apart from some marginal critics still wondering what was actually being measured – the LIGO detections are real. However, whether or not these waves involve discrete lightlike particles – like photons and, in the case of the strong force, neutrinos – is a very different question. Do I have an opinion on it? I sure do. It is this: when matter gets destroyed or created (remember the LIGO detections involved the creation and/or destruction of matter as black holes merge), gravitational waves must carry some of the energy, and there is no reason to assume that the Planck-Einstein relation would not apply. Hence, we will have energy packets in the gravitational wave as well: the equivalent of photons (and, most probably, of neutrinos), in other words. All of this is, obviously, very speculative. Again, just think of this whole blog post as me freewheeling: the objective is, quite simply, to make you think as hard as I do about these matters. 🙂

As for my remark on the Cooper pairs being a unit or not, that question may be answered by thinking about what happens if Cooper pairs are broken, which is a topic I am not familiar with, so I cannot say anything about it.

Bell’s No-Go Theorem

I’ve been asked a couple of times: “What about Bell’s No-Go Theorem, which tells us there are no hidden variables that can explain quantum-mechanical interference in some kind of classical way?” My answer to that question is quite arrogant, because it’s the answer Albert Einstein would give when younger physicists would point out that his objections to quantum mechanics (which he usually expressed as some new  thought experiment) violated this or that axiom or theorem in quantum mechanics: “Das ist mir wur(sch)t.

In English: I don’t care. Einstein never lost the discussions with Heisenberg or Bohr: he just got tired of them. Like Einstein, I don’t care either – because Bell’s Theorem is what it is: a mathematical theorem. Hence, it respects the GIGO principle: garbage in, garbage out. In fact, John Stewart Bell himself – one of the third-generation physicists, we may say – had always hoped that some “radical conceptual renewal”[1] might disprove his conclusions. We should also remember Bell kept exploring alternative theories – including Bohm’s pilot wave theory, which is a hidden variables theory – until his death at a relatively young age. [J.S. Bell died from a cerebral hemorrhage in 1990 – the year he was nominated for the Nobel Prize in Physics. He was just 62 years old then.]

So I never really explored Bell’s Theorem. I was, therefore, very happy to get an email from Gerard van der Ham, who seems to have the necessary courage and perseverance to research this question in much more depth and, yes, relate it to a (local) realist interpretation of quantum mechanics. I actually still need to study his papers, and analyze the YouTube video he made (which looks much more professional than my videos), but this is promising.

To be frank, I got tired of all of these discussions – just like Einstein, I guess. The difference between realist interpretations of quantum mechanics and the Copenhagen dogmas is just a factor 2 or π in the formulas, and Richard Feynman famously said we should not care about such factors (Feynman’s Lectures, III-2-4). Modern physicists fudge them away consistently. They’ve done much worse than that, actually. :-/ They are not interested in truth. Convention, dogma, indoctrination – non-scientific historical stuff – seems to prevent them from that. And modern science gurus – the likes of Sean Carroll or Sabine Hossenfelder etc. – play the age-old game of being interesting: they pretend to know something you do not know or – if they don’t – that they are close to getting the answers. They are not. They have them already. They just don’t want to tell you that because, yes, it’s the end of physics.


[1] See: John Stewart Bell, Speakable and unspeakable in quantum mechanics, pp. 169–172, Cambridge University Press, 1987.

The nature of time: relativity explained

My manuscript offers a somewhat sacrilegious but intuitive explanation of (special) relativity theory (The Emperor Has No Clothes: the force law and relativity, p. 24-27). It is one of my lighter and more easily accessible pieces of writing. The argument is based on the idea that we may define infinity or infinite velocities as some kind of limit (or some kind of limiting idea), but that we cannot really imagine it: it leads to all kinds of logical inconsistencies.

Let me give you a very simple example here to illustrate these inconsistencies: if something is traveling at an infinite velocity, then it is everywhere and nowhere at the same time, and no theory of physics can deal with that.

Now, if I would have to rewrite that brief introduction to relativity theory, I would probably add another logical argument. One that is based on our definition or notion of time itself. What is the definition of time, indeed? When you think long and hard about this, you will have to agree we can only measure time with reference to some fundamental cycle in Nature, right? It used to be the seasons, or the days or nights. Later, we subdivided a day into hours, and now we have atomic clocks. Whatever you can count and meaningfully communicate to some other intelligent being who happens to observe the same cyclical phenomenon works just fine, right?

Hence, if we would be able to communicate to some other intelligent being in outer space, whose position we may or may not know but both he/she/it (let us think of a male Martian for ease of reference) and we/me/us are broadcasting our frequency- or amplitude-modulated signals wide enough so as to ensure ongoing communication, then we would probably be able to converge on a definition of time in terms of the fundamental frequency of an elementary particle – let us say an electron to keep things simple. We could, therefore, agree on an experiment where he – after receiving a pre-agreed start signal from us – would starting counting and send us a stop signal back after, say, three billion electron cycles (not approximately, of course, but three billion exactly). In the meanwhile, we would be capable, of course, to verify that, inbetween sending and receiving the start and stop signal respectively (and taking into account the time that start and stop signal needs to travel between him and us), his clock seems to run somewhat differently than ours.

So that is the amazing thing, really. Our Martian uses the same electron clock, but our/his motion relative to his/ours leads us to the conclusion his clock works somewhat differently, and Einstein’s (special) relativity theory tells us how, exactly: time dilation, as given by the Lorentz factor.

Does this explanation make it any easier to truly understand relativity theory? Maybe. Maybe not. For me, it does, because what I am describing here is nothing but the results of the Michelson-Morley experiment in a slightly more amusing context which, for some reason I do not quite understand, seems to make them more comprehensible. At the very least, it shows Galilean relativity is as incomprehensible – or as illogical or non-intuitive, I should say – as the modern-day concept of relativity as pioneered by Albert Einstein.

You may now think (or not): OK, but what about relativistic mass? That concept is, and will probably forever remain, non-intuitive. Right? Time dilation and length contraction are fine, because we can now somehow imagine the what and why of this, but how do you explain relativistic mass, really?

The only answer I can give you here it to think some more about Newton’s law: mass is a measure of inertia, so that is a resistance to a change in the state of motion of an object. Motion and, therefore, your measurement of any acceleration or deceleration (i.e. a change in the state of motion) will depend on how you measure time and distance too. Therefore, mass has to be relativistic too.

QED: quod erat demonstrandum. In fact, it is not a proof, so I should not say it’s QED. It’s SE: a satisfactory explanation. Why is an explanation and not a proof? Because I take the constant speed of light for granted, and so I kinda derive the relativity of time, distance and mass from my point of departure (both figuratively and literally speaking, I’d say).

Post scriptum: For the mentioned calculation, we do need to know the (relative) position of the Martian, of course. Any event in physics is defined by both its position as well as its timing. That is what (also) makes it all very consistent, in fact. I should also note this short story here (I mean my post) is very well aligned with Einstein’s original 1905 article, so you can (also) go there to check the math. The main difference between his article and my explanation here is that I take the constant speed of light for granted, and then all that’s relative derives its relativity from that. Einstein looked at it the other way around, because things were not so obvious then. 🙂

The End of Physics

There is an army of physicists out there – still – trying to convince you there is still some mystery that needs explaining. They are wrong: quantum-mechanical weirdness is weird, but it is not some mystery. We have a decent interpretation of what quantum-mechanical equations – such as Schrodinger’s equation, for example – actually mean. We can also understand what photons, electrons, or protons – light and matter – actually are, and such understanding can be expressed in terms of 3D space, time, force, and charge: elementary concepts that feel familiar to us. There is no mystery left.

Unfortunately, physicists have completely lost it: they have multiplied concepts and produced a confusing but utterly unconvincing picture of the essence of the Universe. They promoted weird mathematical concepts – the quark hypothesis is just one example among others – and gave them some kind of reality status. The Nobel Prize Committee then played the role of the Vatican by canonizing the newfound religion.

It is a sad state of affairs, because we are surrounded by too many lies already: the ads and political slogans that shout us in the face as soon as we log on to Facebook to see what our friends are up to, or to YouTube to watch something or – what I often do – listen to the healing sounds of music.

The language and vocabulary of physics are complete. Does it make us happier beings? It should, shouldn’t it? I am happy I understand. I find consciousness fascinating – self-consciousness even more – but not because I think it is rooted in mystery. No. Consciousness arises from the self-organization of matter: order arising from chaos. It is a most remarkable thing – and it happens at all levels: atoms in molecules, molecules forming cellular systems, cellular systems forming biological systems. We are a biological system which, in turn, is part of much larger systems: biological, ecological – material systems. There is no God talking to us. We are on our own, and we must make the best out of it. We have everything, and we know everything.

Sadly, most people do not realize.

Post scriptum: With the end of physics comes the end of technology as well, isn’t it? All of the advanced technologies in use today are effectively already described in Feynman’s Lectures on Physics, which were written and published in the first half of the 1960s.

I thought about possible counterexamples, like optical-fiber cables, or the equipment that is used in superconducting quantum computing, such as Josephson junctions. But Feynman already describes Josephson junctions in the last chapter of his Lectures on Quantum Mechanics, which is a seminar on superconductivity. And fiber-optic cable is, essentially, a waveguide for light, which Feynman describes in very much detail in Chapter 24 of his Lectures on Electromagnetism and Matter. Needless to say, computers were also already there, and Feynman’s lecture on semiconductors has all you need to know about modern-day computing equipment. [In case you briefly thought about lasers, the first laser was built in 1960, and Feynman’s lecture on masers describes lasers too.]

So it is all there. I was born in 1969, when Man first walked on the Moon. CERN and other spectacular research projects have since been established, but, when one is brutally honest, one has to admit these experiments have not added anything significant – neither to the knowledge nor to the technology base of humankind (and, yes, I know your first instinct is to disagree with that, but that is because study or the media indoctrinated you that way). It is a rather strange thought, but I think it is essentially correct. Most scientists, experts and commentators are trying to uphold a totally fake illusion of progress.

Mental categories versus reality

Pre-scriptum: For those who do not like to read, I produced a very short YouTube presentation/video on this topic. About 15 minutes – same time as it will take you to read this post, probably. Check it out: https://www.youtube.com/watch?v=sJxAh_uCNjs.

Text:

We think of space and time as fundamental categories of the mind. And they are, but only in the sense that the famous Dutch physicist H.A. Lorentz conveyed to us: we do not seem to be able to conceive of any idea in physics without these two notions. However, relativity theory tells us these two concepts are not absolute and we may, therefore, say they cannot be truly fundamental. Only Nature’s constants – the speed of light, or Planck’s quantum of action – are absolute: these constants seem to mix space and time into something that is, apparently, more fundamental.

The speed of light (c) combines the physical dimensions of space and time, and Planck’s quantum of action (h) adds the idea of a force. But time, distance, and force are all relative. Energy (force over a distance), momentum (force times time) are, therefore, also relative. In contrast, the speed of light, and Planck’s quantum of action, are absolute. So we should think of distance, and of time, as some kind of projection of a deeper reality: the reality of light or – in case of Planck’s quantum of action – the reality of an electron or a proton. In contrast, time, distance, force, energy, momentum and whatever other concept we would derive from them exist in our mind only.

We should add another point here. To imagine the reality of an electron or a proton (or the idea of an elementary particle, you might say), we need an additional concept: the concept of charge. The elementary charge (e) is, effectively, a third idea (or category of the mind, one might say) without which we cannot imagine Nature. The ideas of charge and force are, of course, closely related: a force acts on a charge, and a charge is that upon which a force is acting. So we cannot think of charge without thinking of force, and vice versa. But, as mentioned above, the concept of force is relative: it incorporates the idea of time and distance (a force is that what accelerates a charge). In contrast, the idea of the elementary charge is absolute again: it does not depend on our frame of reference.

So we have three fundamental concepts: (1) velocity (or motion, you might say: a ratio of distance and time); (2) (physical) action (force times distance times time); and (3) charge. We measure them in three fundamental units: c, h, and e. Che. 🙂 So that’s reality, then: all of the metaphysics of physics are here. In three letters. We need three concepts: three things that we think of as being real, somehow. Real in the sense that we do not think they exist in our mind only. Light is real, and elementary particles are equally real. All other concepts exist in our mind only.

So were Kant’s ideas about space and time wrong? Maybe. Maybe not. If they are wrong, then that’s quite OK: Immanuel Kant lived in the 18th century, and had not ventured much beyond the place where he was born. Less exciting times. I think he was basically right in saying that space and time exist in our mind only. But he had no answer(s) to the question as to what is real: if some things exist in our mind only, something must exist in what is not our mind, right? So that is what we refer to as reality then: that which does not exist in our mind only.

Modern physics has the answers. The philosophy curriculum at universities should, therefore, adapt to modern times: Maxwell first derived the (absolute) speed of light in 1862, and Einstein published the (special) theory of relativity back in 1905. Hence, philosophers are 100-150 years behind the curve. They are probably even behind the general public. Philosophers should learn about modern physics as part of their studies so they can (also) think about real things rather than mental constructs only.

Form and substance

Philosophers usually distinguish between form and matter, rather than form and substance. Matter, as opposed to form, is then what is supposed to be formless. However, if there is anything that physics – as a science – has taught us, is that matter is defined by its form: in fact, it is the form factor which explains the difference between, say, a proton and an electron. So we might say that matter combines substance and form.

Now, we all know what form is: it is a mathematical quality—like the quality of having the shape of a triangle or a cube. But what is (the) substance that matter is made of? It is charge. Electric charge. It comes in various densities and shapes – that is why we think of it as being basically formless – but we can say a few more things about it. One is that it always comes in the same unit: the elementary charge—which may be positive or negative. Another is that the concept of charge is closely related to the concept of a force: a force acts on a charge—always.

We are talking elementary forces here, of course—the electromagnetic force, mainly. What about gravity? And what about the strong force? Attempts to model gravity as some kind of residual force, and the strong force as some kind of electromagnetic force with a different geometry but acting on the very same charge, have not been successful so far—but we should immediately add that mainstream academics never focused on it either, so the result may be commensurate with the effort made: nothing much.

Indeed, Einstein basically explained gravity away by giving us a geometric interpretation for it (general relativity theory) which, as far as I can see, confirms it may be some residual force resulting from the particular layout of positive and negative charge in electrically neutral atomic and molecular structures. As for the strong force, I believe the quark hypothesis – which basically states that partial (non-elementary) charges are, somehow, real – has led mainstream physics into the dead end it finds itself in now. Will it ever get out of it?

I am not sure. It does not matter all that much to me. I am not a mainstream scientist and I have the answers I was looking for. These answers may be temporary, but they are the best I have for the time being. The best quote I can think of right now is this one:

‘We are in the words, and at the same time, apart from them. The words spin out, spin us out, over a void. There, somewhere between us, some words form some answer for some time, allowing us to live more fully in the forgetting face of nonexistence, in the dissolving away of each other.’ (Jacques Lacan, in Jeremy D. Safran (2003), Psychoanalysis and Buddhism: an unfolding dialogue, p. 134)

That says it all, doesn’t it? For the time being, at least. 🙂

Post scriptum: You might think explaining gravity as some kind of residual electromagnetic force should be impossible, but explaining the attractive force inside a nucleus behind like charges was pretty difficult as well, until someone came up with a relatively simple idea based on the idea of ring currents. 🙂

Explaining the proton mass and radius

Our alternative realist interpretation of quantum physics is pretty complete but one thing that has been puzzling us is the mass density of a proton: why is it so massive as compared to an electron? We simplified things by adding a factor in the Planck-Einstein relation. To be precise, we wrote it as E = 4·h·f. This allowed us to derive the proton radius from the ring current model:

proton radius This felt a bit artificial. Writing the Planck-Einstein relation using an integer multiple of h or ħ (E = n·h·f = n·ħ·ω) is not uncommon. You should have encountered this relation when studying the black-body problem, for example, and it is also commonly used in the context of Bohr orbitals of electrons. But why is n equal to 4 here? Why not 2, or 3, or 5 or some other integer? We do not know: all we know is that the proton is very different. A proton is, effectively, not the antimatter counterpart of an electron—a positron. While the proton is much smaller – 459 times smaller, to be precise – its mass is 1,836 times that of the electron. Note that we have the same 1/4 factor here because the mass and Compton radius are inversely proportional:

ratii

This doesn’t look all that bad but it feels artificial. In addition, our reasoning involved a unexplained difference – a mysterious but exact SQRT(2) factor, to be precise – between the theoretical and experimentally measured magnetic moment of a proton. In short, we assumed some form factor must explain both the extraordinary mass density as well as this SQRT(2) factor but we were not quite able to pin it down, exactly. A remark on a video on our YouTube channel inspired us to think some more – thank you for that, Andy! – and we think we may have the answer now.

We now think the mass – or energy – of a proton combines two oscillations: one is the Zitterbewegung oscillation of the pointlike charge (which is a circular oscillation in a plane) while the other is the oscillation of the plane itself. The illustration below is a bit horrendous (I am not so good at drawings) but might help you to get the point. The plane of the Zitterbewegung (the plane of the proton ring current, in other words) may oscillate itself between +90 and −90 degrees. If so, the effective magnetic moment will differ from the theoretical magnetic moment we calculated, and it will differ by that SQRT(2) factor.

Proton oscillation

Hence, we should rewrite our paper, but the logic remains the same: we just have a much better explanation now of why we should apply the energy equipartition theorem.

Mystery solved! 🙂

Post scriptum (9 August 2020): The solution is not as simple as you may imagine. When combining the idea of some other motion to the ring current, we must remember that the speed of light –  the presumed tangential speed of our pointlike charge – cannot change. Hence, the radius must become smaller. We also need to think about distinguishing two different frequencies, and things quickly become quite complicated.